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DUAL VARIATIONAL PROBLEMS FOR BOUNDARY FUNCTIONALS 
OF THE LINEAR THEORY OF ELASTICITY* 

V. Ia. THRESHCHHNKO 

Dual variational problem for use with the problem of minimization of the boundary 
functionals of three-dimensional theory of elasticity, is formulated using the 
method of orthogonal expansions at the boundary of the region constructed in /l/. 
Solutions of the initial and the dual problem obtained yield the estimates for the 
error of the approximate solutions of the boundary value problems of the theory of 
elasticity. 

1. In the linear theory of elasticity the Lagrange functional J(u)(defined on the field 
of admissible displacements u) and the Castigliano functional Z(U) (defined on the field of 
admissible stresses U) are both dual functionals. This means that the relation 

inf. J (u) = sup, z (u) 

holds. The relation can be used to obtain two-sided estimates of the energy functional.Below 
we show that the same result can be obtained for the boundary functionals of the theory of 
elasticity, from the orthogonal expansions of the dual pair of the trace spaces W*+'j' (S) x 
W,-*1z(S) (S is the boundary of a bounded region CC E3 occupied by the elastic medium) con- 
structed in /l/ 

W**": (S) = P @ P@, w*-'11 (S) = P @ PA (1.1) 

Here W,*+(S) C W”*(S) is the space of traces of the displacement vectors m,(z) and XE G, 
which are solutions of the problem 

Atpo - - 0 in G (d %dG = 0). t(v) (cpo) 18 E t(v) (u+) 1s (1.2) 

P is the subspace of traces of the displacement vectors u‘ (2) satisfying the boundary con- 
dition on the fixed part of the surface S 

p* = {u” = wz”‘* (S) I Ill”* u’lr,.s = 0, VU E P}, P’ = (8” (u”) EW*-% (S) 1 (W (UN), u’) E 0, VU’EP} (1.3) 

PL = TP@ (see /l/, lemmas 3-55). 
In (1.2) and (1.3) A is a vector operator of the anisotropic theory of elasticity /2/ 

and u*(x) is an arbitrary displacement vector satisfying, in the region G, the equation of 
the theory of elasticity Au* = K (K(z), ZE G is the volume force vector) and the boundary 
condition on the free part of the surface S. We shall write this vector in the form of a 
SUIU u* = u. +‘p,, where ug(t) is the energy solution of the fundamental boundary value prob- 
lem of the theory of elasticity /3/, Ta is a solution of (1.2), W(u*) is the stress vector 
acting on the plane of the surface S and 
condition Au"=0 

u'(t) is the displacement vector satisfying the 
in G and the boundary condition on the free part of the surface S. for 

such vectors u* and v" the Betti formula /l/ yields 

u” . t(“) (u’) ds a 3 W (u”, u”) dG > 0 (1.4) 

The right-hand side of the first equation of (1.4) is a symmetric bilinear form /2/, and the 
right-hand side of the second equation represents the corresponding quadratic form positive 
for the vectors u' satisfying the condition 

5 
u"dG=0 

[, ]'/*a denotes a scalar product in the space W2*“r (S). (.) is the ratio of the duality on 
W:/*(S) x W2-‘“(S), W;)*(S) is the Sobolev-Slobodetskii space and W,-‘/*(S) its dual, and T 

is the isometry of W,*‘::(S) on W,+*(S) given, 
tion /l/ 

according to the Riesz theorem, by the rela- 
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[V*,dl*,~, s-(v”, Tu”)o. s=:v*, t”‘(u”)), Vv”, u” E rip (S) C1.5) 

In addition we have /I/ 

II Tu" II-QS = II Pf (u") 11-y:. s < co II u" li~rz. s, ct) > 0 :l.S! 

where (r)O,S is a scalar product in L, (S) and JIA/JL!~,~, ll.[/-l.l,s are the norms in Wi,$ (S) and 
W;-I(*(S), respectively. 

It was shown in /l/ that, using the orthogonal expansion (1.11, we can construct an ener- 
gy solution ug of e.g. the first problem of the theory of elasticity 

AU, =KinG,u,/s=O (P=(O)) 

by using the projection cp, of an arbitrary vector u*into the subspace P@ followed by sub- 
traction from the vector u*:uO = u* --To, so that u0 1s E P. In this manner the projection 
Tom PS minimizes the functional F,(u") = /u* -u" I,,~,~ on do m, i.e. 

hf Fo of) = u hd* I u* - u” I*.*, 8 - 1 u” - cpe jlf.. $ 
* + 

The existence follows from the second expansion of (I.11 , and the theorem of orthogonal pro- 
jection /2/ is used to show that the dual variational problem has a solution. 

2. The variational problem for the functional FR(u”f is equivalent to the variational 
problem for the functional /II* -u" I&s - /II* $,,a, since u* is a known element. Otherwise it 
is equivalent, by virtue of the relation 

1 u* - u” IS,, $ - 1 u* g., s = 1 u” $$, $ - 2 itI*, U*lr,,q $ 

to the variational problem for the functional 

F (u") = [u", U"l1!,, s - 2 ill*, UVII~,, 8. U’ E pe 

which can be written, taking into account the relation (1.5), in the form 

F (II") = (u". Tu")o,~ - Z(L(", tf'J (n*)) 

where tt\‘, (u*) E *'I (S) is a known element. The element &E pe> (in the case of the first 
fundamental problem of the theory of elasticity we have P@J = Kir (s) /l/) minimizing the 
functional F(u"), satisfies the condition 

(9'~~. II*)~,~ ss (TV,, u") = (t(") (u*), u"), V u" E P@ (2.1) 

and from this follows Tcp, = t(')(u*)E PA. 
In what follows we shall need the following assertion which rephrases a known theorem (see 

/a/, p.137) for the case of a linear, symmetric and positive operator L~(v--r V*) with an 
inverse L-'E(V* + v) where V is a reflexive Banach space. The functional f(u) = l:t(Lv. D> 
represents the potential of the operator L. the functional 

j* (v*) = f* (0) i_ l'*(P, L-iv*>. .f* (0) = -I (PO) = 4 (2.2) 

is the potential of the operator L-’ , and the following relations hold for any ~6% V, v* E V*: 

f (v) 5 f* (v’) - cu* l.9 2 0, f (u) -i- f* (Luf - <Lv, v) = 0 (2.3) 

Note. Since the opexator T is an isometry of G"(S) on W-k"(S) it follows that the 
operator T-' is also an isometry of w;;"a(S) on wf'*(S), therefore T-10 = 0. 

Theorem 1. Let (pOW,l(G) be a generalized solution of the problem (1.2). Let this solu- 
tion exist /3/ and let the relation 

q,ls =.PO, ;(~)(~~ + t@)(u*)-2Tq+EPL, 

where Pe and PL are given by (1.31, hold /l/. Then, for the funetionals 

F (us’)= (II”, Tu")~, s - 2(u", t(") (u')), cD(t(") (u"))= --'I( (t(v) (u") + t(v) (II+), T-'(t(") (u*) + t(v) (~*)))a, s 

we have the following dual relations: 

F(cpe)== inf F(u")- 
lE”&PO 

tiv;PEPI CD (t(v) (u”N - @ WV) (94 

(since here the lower (upper) edge is reached, we can replace inf (syp) by min (max) ).According 

to (2.2), a functional conjugate tc f (u”)= 1:2(u*,Tu*)o,s, is given by 

f* (t'"'(u")) = 1/c (tcV) (II"), T-' (to') (u*)))o, s 
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Clearly, f* (0) = - /(T-VI) = - f(O) = 0 (see the note above). 
Here and hencefosth the duality ratio (,> becomes identical to the scalar product (. )o,s 

in the HiLbert space t,(S) of elements af w:'(S) X VP' (s). 
The expressions for the functionals F(u*) and @(t(v)(u")f yield 

2F (UT - 2@ (t”’ (u”)) = 4f fu”) - 4 Qf. tf* (St*); _t f* pi (df + t(Y) (?Pjf 

The first equation of (2.31 yields the inequality 

f (II") + f* (W (u") + t(v) (tP)) > (u", t(Y) (II") + t(y) (tP)>VilLI E pe, W (u") $ 2("1 (II*) E P-L 

and, taking It into account,we obtain 

2F (Ilu") - ZtD (W (0 > 3f (u”) - 4 <u”, t(V) (u*)) + Cd, W’ (u”f + w (Ix*), = 31 (d) - 3 (If, t(v) (IP)) Jr 12.4) 

ws Tu"h, s = -gfn",Tu")o,B-3{u*, w&l*)) 

Since we aswme the positiveness of the functional F(d), it follows that 

+ 1 (u", t(") (u*)> 1 < 2 1 Cu", t@) (u*)> ) 4 (u",T+ S 

Then from (2.4) we obtain 

Further we have 

F (Qo) - @ (t'"'(Q&= 2f (90) - 2 (Qo, t(")(u+)> -I- -+r (t'"'(Qo) + t(Y'(~*)) - 2ffQo) - 2 (@, t"'(u*)) + (2.6) 

+ f+ (2TQo) - 2f (Qo) A- zt* (TQo) - 2 tcp,, t(V) (u’,, 

Since ttv) fgi,) Is 3 t(* fu*> fs bee Il.21 1 and (spo3 tt*) (Q& = (rp,, TQ&+ using 12.3) we obtainfrom 
(2.6) 

F (Qn) - (0 (t@‘(fcp,)) = zf fq,) + 2fc (TQJ - 2 (TQo. Qa> = 0 

which, togather with the inequality (2.51, proves the theorem. We note that the duality rela- 
tions were proved in the same manner in /4/. 

3. Let Q,.,E pP,l{G) denote the approximate value af the projection Qpp, constructed 
using the Ritz method and such* that 

Now we can show that /2/ the approximate solution u,, LJI U* -Q,, of the fundamental boundary 
value problem of the theory of elasticity tends to its exact solution UfJ - u* - QD (here 
ug - u, -5 Qn -Qpf in the metric of W*'cr (S) 

Em frps - r%, h,, s = fh I + - u, Iv.,s, = 0, n-em 

and, by virtue of (1.51 we also have 

lim (Q, - Qoq H') (Qll - QJ) = Xim (uO - u,, t(q), (It@ - u,)) = 0, n -+ 00 

From (1.6) it follows that 

The relation (1.4) also imp&es the convergence 

lim2~)iY(Qn-*o)dC~lim2 W(uo-~)&=30, n-m 

Eind, since the quadratic form 

on the vect~xs cp E W,l(E) satisfying the condition 

5 Q&=-o 

is positive definite 12,3f 
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(3.1) 

we also have the convergence 

lim II Pn - 'PO 111. G = lb 11 % - % 1h.G = 0, n--+00 

Next we consider the problem of estimating the error of approximate solutions of thedual 
variational problems formulated in Theorem 1 (see /2/). 

Theorem 2. Let qn = W,l (G) (cp. IS E PQ, W (q,) =PL) be the arbitrary Ritz approxima- 
tions for m,. Then the following error estimates hold: 

II uo - un Ill. G = II Qn - QO 111. c B A (~4, II uo - u, hr. s-II Q+, - QO lb!., s <CIA (Q,,) 

11 t(v) (uo) - w (&J II+*. s = II W) (QTJ - w) (QO) 11-1~:. s <cd (cp,) , (A (pn)=(+ V’ (CPA - @WV) (%))I ]r’j 

The projection 'pO sought on which 

inf 
U"mP3 

1 u* - II" I,,,,, s 

is attained, is a generalized solution, belonging to W,l(G) of the problem (1.2) in the sense 

/3/ 

2 
d 
W(q,,q)dG - s q.W(u*)&= 0, V~JE W,l(G) (3.2) 

9 
which also minimizes the functional 

W~)==2~Wcp)dG -2 
G 5 

Q.t(')(U*)dS on cp~CVa'!Gh 
d 

qdG=O 

For the difference of the functionals we have 

-+-F(S) - -+(cpo)- 
i 
Wcp,)dG-{ W(e)dc - (cp, -90) tfv)(u*)& 

a 

from which, assuming in (3.2) Cp - %I -_oe we obtain 

-+F(Q&--+F(Qob= WsW--~~W~o)dG- 
G 

2~w~~,(pk-(po)c1GE3~w(cpn)dG--5 ?Y(cpo)dG-- 
0 G G 

2SW(~,~"k)dG+2SW(~o)dG5.SW(cp.--o)dG 
G u G 

From this by virtue of (3.1) we obtain the inequality 

F (CPA - F (sr) > c II cp, - 'PO r,l",o 

Now, using the inequality F(cp,)) O(t@')(cp,)) which follows from the duality ratio of 

Theorem 1, we obtain the estimate 

II 9% - ‘PO IL. c d A (CPA 

From the inequality of the theorem on traces on s of the functions belonging to Iv,'(G) in 

the metric WSr*(S) , we also obtain the estimate 

II (in - '~0 k,,s < c,A (CPA CI >, 0 

and by virtue of (1.6) we have 

II w @n) - tcY) On,) II+. s d 0 (%A, c, > 0 

which proves the theorem. 
Using the relation (see (2.1)) 

(Tq,,, q,)o, s = -(t(“) (u*). W. u%‘, E ~-7 (wn=jlwPi 

which must be satisfied by the approximate solution (P,, of the problem on the minimum of the 

functional F(u") and the relation W(iqn)f t@)(u*)= 2Tg,, (which is regarded as a duality 
ratio on W,"*(S) x W,-'/x(S)), the right-hand sides of the estimates obtained can be reduced to 
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the form suitable for the computations 

F (cm) - CD (t"') (cp,)) = ('W cp,)o. s - 2 (t(V) (u*), Q,,) + l/d (t'") (cp,) + t'V) (u"), T-'(W(q,) + t(V) (u*)))o, s - 

(Tq+,, q,,)~. s - 2 WV) (u*), (P,,) + l/d (2Tqnt T-' (2Tq,,))o, s =(Tq+v GAO, s - 2 P (u*h %) + (Tcp,u CPA, s = 

2 (TG cp,Ja, s - 2 (W (u*), cp,) z 2 
A 
II cp, [t(v) (q,,) - t(v) (II*)] dr 

From this follows, in particular, 

lim 2 1 cp, [W (~3 - W (II*)] ds ==2 cpo (t(v) (cpo)--t""(o+)] ds=0 
n-cc. fj .l 

since (see (1.2)) W (cp@) Is = W) (u*)ls. 
We note that following the method of determination of the scalar product lu*,~'l,,,,s of 

the elements II',v'~ $'I#($) (see (1.5) ), we can also find the scalar product of the elements 
t(“) (II‘) and t(')(v') from W;“‘(S) in accordance with the Riesz theorem (se@ note)as follows: 

(t(v) (II'), i(V) (V")] _,,:, s = (@') (u'), T-' (t(") (v')))o, s 

with the corresponding norm 

j t(v) (u’) 1 _,,‘:, s = (P (U’), P) (U”)l_,;,sl”~ 

Then the problem of maximization mar ~(tcv)(ua))(t’V)(~“)~pl) becomes equivalent to the problem of 
minimization 

max @,(t@)(u"))= max [ 
- -& 1 tcV) (u’) + tcV) (II*) Ilk;,, s 3 = mio I/, 1 tcv) Cu”) + t(‘) (II*) It, :, s 

the solution of which is represented by the projection of the element t(")(u*) E H.l"'t(s) on PL 

min I/, 1 P)(u”)ft(“) (u*) k ,:, s = ‘id It w (cpo) + w (W It,,, 6, ( t(V) (II’) es PA) 
A different approach to the study of variational problems for convex functionals of the 

theory of elasticity using the concepts of duality, was discussed by the author in /5/. 

REFERENCES 

1. TERESHCHENKO V.Ia. Method of orthogonal expansions on the domain boundary in three-dimen- 
sional problems of the linear theory of elasticity. PMM Vo1.43, No.4, 1979. 

2. MIKHLIN S.G., Variational Methods in Mathematical Physics. English translation, Pergamon 
Press, Book No. 10146, 1964. 

3. TERESHCHENKO V.Ia., Generalization of the Trefftz method for three-dimensional elasticity 
problems. English translation, Pergamon Press, J. Comput. Mat.,mat. Phys. Vo1.16,No.4,1976. 

4. GAEVSKII Kh., GP.EGER K. and ZAKHARIAS K. Nonlinear Operator Equations and Operator Differ- 
ential Equations. Moscow, "Mir", 1970. 

5. TERESHCHSNKO V. Ia., On the convex functionals analogous to the generalized Tefftz func- 
tionals in variational problems of the theory of elasticity, PMM ~01.4, ~0.1, 1980. 

Translated by L.K. 


